

НАСОСЫ ДВУХВИНТОВЫЕ ТИПА А1 2ВВ И АГРЕГАТЫ ЭЛЕКТРОНАСОСНЫЙ НА ИХ ОСНОВЕ

Руководство по эксплуатации

H41.1131.00.000 P3

СОДЕРЖАНИЕ

			ЛИСТ
BE	ВЕДЕ	НИЕ	4
1	ΟΠν	1САНИЕ И РАБОТА	6
	1.1	Назначение изделия.	6
	1.2	Технические характеристики	9
	1.3	Состав изделия	11
	1.4	Система контроля и управления	11
	1.5	Устройство и работа	12
	1.6	Маркировка и пломбирование	14
	1.7	Упаковка	17
2	ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ		
	2.1	Меры безопасности при подготовке изделия к работе	18
	2.2	Подготовка к монтажу	21
	2.3	Монтаж системы трубопроводов	21
	2.4	Монтаж изделия	23
	2.5	Подготовка к пуску	24
	2.6	Пуск (опробование), подготовка к работе	25
3	ИСГ	ІОЛЬЗОВАНИЕ	26
	3.1	Пуск	26
	3.2	Порядок контроля работоспособности	26
	3.3	Меры безопасности при работе изделия	26
	3.4	Остановка	27
	3.5	Особые условия эксплуатации	28
4	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ		
	4.1	Обслуживание изделия	30
	4.2	Капитальный ремонт	31
	4.3	Разборка – сборка	31
	4.4	Уплотнение торцовое	35
5	воз	МОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	36

6 РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, ГАРАНТИИ ИЗГОТОВИТЕЛЯ.	38
7 КОНСЕРВАЦИЯ	39
8 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	39
9 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	40
10 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ	41
РИСУНОК 1 – УСТРОЙСТВО НАСОСА	42
РИСУНОК 2 – СХЕМА МЕСТ СМАЗКИ	45
РИСУНОК 3 – ФИРМЕННАЯ ТАБЛИЧКА	45
Приложение А Характеристики насоса	46
Приложение Б Габаритный чертеж	48
Приложение В Перечень запасных частей и инструмента, комплектно	
поставляемых с насосом	49
Приложение Г Перечень деталей ремонтного комплекта	50
Приложение Д Учёт работ по обслуживанию и ремонту изделия, проводимых	В
процессе эксплуатации	52
Приложение Е Дополнительное оборудование поставленное комплектно с	
изделием	53
Приложение Ж Чертеж средств взрывозащиты	54
ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ	55

Руководство по эксплуатации (РЭ) совмещено с паспортом (ПС) и предназначено для ознакомления обслуживающего персонала с конструкцией насоса (агрегата), и отдельных его составных частей, а также с техническими характеристиками и правилами эксплуатации. Насосы (агрегаты) соответствуют требованиям технических условий ТУ 3632-094-05747979-2002.

При ознакомлении с насосом следует дополнительно руководствоваться эксплуатационными документами на комплектующее оборудование.

В связи с постоянным усовершенствованием выпускаемой продукции в конструкцию отдельных деталей, насоса в целом, могут быть внесены незначительные изменения, не влияющие на безопасность, не отраженные в настоящем РЭ.

Обязательные требования к насосу, направленные на обеспечение его взрывобезопасности, безопасности для жизни, здоровья людей и охраны окружающей среды изложены в разделах 2 и 3.

Потребитель в период гарантийной эксплуатации продукции ведет учет наработки (моточасов) насоса, один раз в полгода со дня начала эксплуатации предоставляет в адрес Изготовителя информацию о наработке насоса с указанием параметров его работы, месте установки, перекачиваемой жидкости, посредством факсимильной связи (48677) 7-92-11

К монтажу и эксплуатации изделия должны допускаться лица, имеющие необходимую квалификацию, изучившие настоящее РЭ и эксплуатационную документацию на комплектующее оборудование.

В тексте настоящего РЭ информация или требования, несоблюдение которых может создать опасность для персонала или повлечет нарушение безопасной работы насоса, обозначаются следующими символами:

- опасность для персонала

- электроопасность

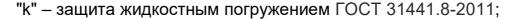
- информация по обеспечению безопасной (безаварийной) работы насоса и/или защиты насоса.

ВНИМАНИЕ!

Насос типа А1 2ВВ и агрегат(ы) на его основе относятся к оборудованию насосы двухвинтовые (КОД Общероссийского классификатора основных фондов 142916122 по ОК 013-94, 330.28.13.13.130 по ОК 013-2014) и являются объектами высокой энергетической эффективности согласно постановления Правительства РФ от 17.06.2015 №600 «Об утверждении перечня объектов и технологий, которые относятся к объектам и технологиям высокой энергетической эффективности».

Код Общероссийского классификатора продукции по видам экономической деятельности ОКПД 2 ОК 034-2014 (КПЕС 2008) – 2: 28.13.13.000.

1 ОПИСАНИЕ И РАБОТА


- 1.1 Назначение изделия.
- 1.1.1 Настоящее руководство по эксплуатации распространяется на насосы двухвинтовые типа A1 2BB и агрегаты электронасосные на их основе, предназначенные для перекачивания жидкостей в широком диапазоне вязкостей химически неактивных по отношению к примененным материалам.
- 1.1.2 При разработке насосов (агрегатов) были учтены требования безопасности приведенные в ГОСТ 31839-2012, ГОСТ 12.1.003-2014, ГОСТ 12.1.012-2004, ГОСТ 31441.1-2011, ГОСТ 31441.5-2011, ГОСТ 31441.8-2011, ГОСТ 31610.0-2019, а также технических регламентах таможенного союза ТР ТС 010/2011 и ТР ТС 012/2011.
- 1.1.3 Насос (агрегат) относится к изделиям общего назначения (ОН), непрерывного длительного применения, восстанавливаемым, обслуживаемым, ремонтируемым необезличенным способом согласно требованиям ГОСТ 27.003-2016.
- 1.1.4 По умолчанию насос (агрегат) изготавливается для эксплуатации в макроклиматическом районе с умеренным климатом исполнение «У», категория размещения при эксплуатации под навесом или в помещениях, где колебания температуры и влажности несущественно отличаются от колебаний на открытом воздухе категория «2». По заказу потребителя насосы (агрегаты) могут поставляться в исполнениях, предназначенных для эксплуатации в других макроклиматических районах и при других категориях размещения по ГОСТ 15150-69.

- 1.1.5 Насосы в целом и его составные части в процессе транспортировки, хранения и эксплуатации не выделяют горючие газы и пыль, способные вызвать создание взрывоопасной среды.
- 1.1.6 Насос самостоятельно не может быть источником воспламенения и взрыва взрывоопасных сред, относится к уровню взрывозащиты "взрывобезопасный" и допускает эксплуатацию во взрывоопасных зонах "1", "2" по ГОСТ IEC 60079-10-1-2011 и "21", "22" по ГОСТ IEC 60079-10-2-2011 при перекачивании невзрывопожароопасных жидкостей.

Насос имеет следующие виды взрывозащиты:

"с" – конструкционная безопасность ГОСТ 31441.5-2011;

- 1.1.7 Маркировка взрывозащиты насоса приведена в таблице 1.
- 1.1.8 Маркировка взрывозащиты агрегата приведена в таблице 2:
- 1.1.9 Разрешительная документация

Сертификат соответствия ТР ТС 010/2011 - №TC RU C-RU.AЯ45.В.00924. Срок действия с 09.12.2018 г. по 08.12.2023 г.

Сертификат соответствия ТР ТС 012/2011 –

№EAЭC RU C-RU.AM02.B.00530/21.

Срок действия с 14.07.2021 г. по 13.07.2026 г.

1.1.10 Пример структурного обозначения изделия

Структурное обозначение насоса соответствует:

Hacoc A1 2BB 320/25-K-T4-P2-E У2 ТУ 3632-094-05747979-2002

где: Насос – тип оборудования;

А1 – конструктивное исполнение насоса;

2ВВ – тип насоса (двухвинтовой, с выносными подшипниками);

320 - номинальная подача насоса, м 3 /ч;

25 – максимальное давление насоса, в МПа увеличенное в 10 раз;

К – материальное исполнение насоса:

К-хромоникелевая сталь, (Ст3, сталь 20 – без обозначения);

Т – тип уплотнения:

Т – одинарное торцовое;

4 – производитель уплотнения:

1 – AO "ГМС Ливгидромаш»", 2 – "Burgmann", 3 – "Графлекс",

4 – "Трэм Инжиниринг", 5 – "Герметика", 6 – "John Crane",

7 – "AESSEAL", 8 – "Мегатехком";

Р2 – тип резиновой смеси примененной в РТИ:

Р1 – 3826, Р2 – 1314, Р3 – СБ-26, Р4 – прочие;

Е – взрывобезопасное исполнение насоса;

У – климатическое исполнение;

2 – категория размещения;

ТУ 3632-094-

05747979-2002 – технические условия на поставку.

Примечание - подача и давление приведены при перекачивании жидкости вязкостью 76·10⁻⁶ м²/с (10°ВУ) и номинальной частоте вращения 1450 об/мин.

Структурное обозначение агрегата соответствует:

Arperat A1 2BB 320/25-340/10-K-T4-P2-200-E У2 ТУ 3632-094-05747979-2002

- где: Агрегат тип оборудования;
 - А1 конструктивное исполнение насоса;
 - 2ВВ тип насоса (двухвинтовой, с выносными подшипниками);
 - 320 номинальная подача насоса, м³/ч;*
 - 25 максимальное давление насоса, в МПа увеличенное в 10 раз;*
 - $340 подача насоса в агрегате, м<math>^3/ч;^{**}$
 - 10 максимальное давление насоса в агрегате, в МПа увеличенное в 10 раз;**
 - К материальное исполнение насоса:К-хромоникелевая (Ст3, сталь 20 без обозначения);
 - Т тип уплотнения:
 - Т одинарное торцовое;
 - 4 производитель уплотнения:
 - 1 AO "ГМС Ливгидромаш»", 2 "Burgmann", 3 "Графлекс",
 - 4 "Трэм Инжиниринг", 5 "Герметика", 6 "John Crane",
 - 7 "AESSEAL", 8 "Мегатехком";
 - P2 тип резиновой смеси примененной в РТИ: P1 – 3826, P2 – 1314, P3 – C5-26, P4 – прочие;
 - 200 мощность комплектующего электродвигателя, кВт;
 - Е взрывобезопасное исполнение агрегата (общепромышленное исполнение агрегата без обозначения);
 - У климатическое исполнение;
 - 2 категория размещения;

ТУ 3632-094-

05747979-2002 - технические условия на поставку.

Примечание - подача и давление приведены при перекачивании жидкости вязкостью 76⋅10⁻⁶ м²/с (10°ВУ).

^{*} Подача и давление насоса приведены при номинальной частоте вращения 1450 об/мин.

^{**} Подача и давление насоса в агрегате приведены при номинальной частоте вращения комплектующего электродвигателя.

- 1.2 Технические характеристики
- 1.2.1 Показатели назначения насосов типа A1 2BB по параметрам в номинальном режиме, вне зависимости от примененных материалов, соответствуют указанным в таблице 1. Показатели указаны при вязкости 76·10⁻⁶ м²/с (10°ВУ).

Таблица 1 Показатели назначения насоса

Наименование показателя	A1 2BB 320/25	A1 2BB 400/20	
Подача, л/с (м ³ /ч), не менее	88,88 (320)	111,11 (400)	
Допустимое дифференциальное			
давление насоса, МПа (кгс/см 2),			
не более	2,5 (25)	2,0 (20)	
Допустимое давление на входе, МПа/(кгс/см²), не более	0,2 (2,0)		
Допускаемая вакуумметрическая			
высота всасывания, м, не менее	5		
Внешняя утечка через уплотне-			
ние, л/ч, не более	0,15		
КПД, %, не менее	60		
Частота вращения, об/мин	1450		
Маркировка взрывозащиты		/k IIC T5 X	
насоса	Ex III Db c IIIC T100°C X IP23		
Масса, кг, не более	1900		

1.2.2 Показатели назначения агрегата по параметрам соответствуют указанным в таблице 2.

Таблица 2 Показатели назначения агрегата

Наименование показателя	A1 2BB	
Вязкость перекачиваемой жидкости, ×10 ⁻⁶ м ² /с	76	
Подача насоса в агрегате, м³/ч, не менее		
Частота вращения, об/мин		
Дифференциальное давление насоса в агрегате, МПа, не более		
Климатическое исполнение и категория размещения по ГОСТ 15150-69		
Диапазон температур окружающей среды в условиях эксплуатации, °C		≤ T _a ≤
Тип электродвигателя, исполнение по защите и монтажу, параметры, маркировка взрывозащиты (при наличии)	IM;	IP; _кВт;В;Гц;
Температура перекачиваемой жидкости, °С		
Маркировка взрывозащиты агрегата (при наличии)	Ex	
Масса, кг, не более		

1.2.3 Показатели назначения по перекачиваемым средам соответствуют указанным в таблице 3.

Таблица 3 Показатели назначения по перекачиваемым средам

Наименование и назначение среды	Показатель среды	Значение показателя среды			
Невзрывоопасные	Вязкость, ×10 ⁻⁶ м ² /с	11480			
жидкости в широком диа-	(°ВУ)	(1200)			
пазоне вязкостей, в том	Плотность, кг/м ³	8001200			
числе химически неактив-	Температура, °С	5100*			
ные по отношению к при-	Максимальная концентрация механических частиц, %	1,0			
мененным материалам	Максимальный размер частиц, мм	1,0			
* По требованию заказчика до 150°C.					

- 1.2.4 Показатели надежности насоса (агрегата) указаны в разделе 6, при перекачивании минерального масла класса чистоты не ниже 10 по ГОСТ 17216-2001, кинематической вязкостью 76⋅10⁻⁶ м²/с (10°ВУ) при этом:
- критерием предельного состояния насоса (агрегата) является невозможность или нецелесообразность восстановления работоспособности насоса заменой деталей.
- критерием отказа является несоответствие технических характеристик насоса приведенным в п. 1.2.
- решение о проведении капитального ремонта насоса принимается при снижении подачи более чем на 20% от номинального значения за счет износа рабочих органов (винтов и обоймы).
- после наступления назначенного срока службы, эксплуатация насоса (агрегата) не допускается без проведения работ по продлению срока службы.
- 1.2.5 Показатели надежности комплектующих изделий по технической документации на эти изделия.
- 1.2.6 Характеристики насосов (в том числе виброшумовые) приведены в приложении А.
 - 1.2.7 Габаритные размеры агрегата приведены в приложении Б.

- 1.3 Состав изделия
- 1.3.1 В комплект поставки входят:
- насос (агрегат) в сборе 1 шт.;
- комплект запасных частей и инструмент в соответствии

с приложением В - 1 к-т;

- настоящее руководство по эксплуатации 1 экз.;
- обоснование безопасности H41.1219.00.000 ОБ
 1 экз.;
- комплект документации на комплектующее оборудование 1 к-т;
- запасные части на комплектующее оборудование 1 к-т.

В каждом конкретном случае необходимый комплект поставки уточняется потребителем при заказе оборудования и может отличаться, как в большую, так и в меньшую сторону от приведенного выше.

Производитель оборудования оставляет за собой право включать в комплект поставки дополнительное оборудование, необходимое для нормального функционирования насоса или агрегата. Перечень дополнительного оборудования, поставленного с изделием, приведен в приложении Е.

1.3.2 Электрооборудование должно соответствовать ГОСТ Р МЭК 60204-1-2007 раздел 14. Для комплектации насосов (агрегатов) использовать только сертифицированные комплектующие.

- 1.3.3 Комплектующие, применяемые для комплектации насосов (агрегатов), устанавливаемых на опасных производственных объектах, должны быть сертифицированы на соответствие TP TC 012/2011.
- 1.3.4 Запасные части и эксплуатационная документация на комплектующие изделия поставляются согласно соответствующей НТД на поставку этих изделий.
- 1.3.5 По заказу потребителя за отдельную плату может поставляться ремонтный комплект к насосу согласно приложению Г.
 - 1.4 Система контроля и управления
- 1.4.1 По заказу потребителя насос может поставляться с системой контроля и управления, частотным преобразователем, устройством плавного пуска. Система допускает дистанционные (автоматические) включения и отключения насоса, а так же контроль и регулирование его основных параметров.

- 1.4.2 Алгоритм работы приборов входящих в систему контроля изложен в эксплуатационной документации на конкретные приборы.
- 1.4.3 Электронасосный агрегат может эксплуатироваться в составе блочной модульной насосной станции (БМНС).
 - 1.5 Устройство и работа
- 1.5.1 Насос объемный, горизонтальный. В расточках обоймы насоса размещены два синхронно вращающихся ротора, имеющих специальную винтовую нарезку. Сменная обойма вставлена в сварной корпус насоса. Пробное давление корпуса насоса 3,75 МПа (37,5 кгс/см²).

Вращение с ведущего ротора на ведомый передается через синхронизирующие шестерни. Роторы опираются на подшипники, вынесенные из гидравлической части насоса. Смазка подшипников в насосе консистентная.

Направление вращения ведущего ротора – левое (против хода часовой стрелки), если смотреть со стороны электродвигателя. Направление вращения указано стрелкой, расположенной на корпусе насоса.

Рабочая полость насоса по торцам закрывается проставками, а валы уплотняются торцовыми уплотнениями.

Устройство и принцип работы торцового уплотнения изложен в эксплуатационной документации на торцовое уплотнение.

Материалы основных деталей насоса указаны в таблице 4.

Таблица 4 Материалы основных деталей насоса

Наименование	Обозначение материального исполнения насоса				
детали	-	К			
Корпус	Ст.3 ГОСТ 380-2005, Сталь 20 ГОСТ 1050-2013	12X18H9T FOCT 5632-2014			
Корпуса подшипников	СЧ 20 ГОСТ1412-85	СЧ 20 ГОСТ1412-85			
Проставка Ст. 3 ГОСТ 380-2005		12X18H9T FOCT 5632-2014			
Ротор ведущий, Ротор ведомый Сталь 18ХГТ ГОСТ 4543-2016		12X18H9T FOCT 5632-2014			
Шестерни	Сталь 18ХГТ ГОСТ 4543-2016				
Обойма	Бр ОЗЦ7С5Н1 ГОСТ 613-79				
Примечание - Допускается замена материалов на равноценные или более					
высокого качества.					

12

- 1.5.2 Насос в сборе испытывается на плотность водой давлением 1,0 МПа (10 кгс/см²) согласно указаниям на чертеже.
- 1.5.3 Агрегат состоит из двухвинтового насоса и электродвигателя, смонтированных на общей фундаментной раме. Соединение двигателя и насоса осуществляется через соединительную муфту. Муфта закрывается защитным кожухом.

Смещение осей валов электродвигателя и насоса должно быть не более:

- радиальное 0,1 мм;
- перекос 0,8 мм на длине 1000 мм.

Конструкция агрегата позволяет произвести регулировку смещения валов насоса и электродвигателя как в горизонтальной, так и в вертикальной плоскости.

1.5.4 Муфта служит для передачи крутящего момента от вала электродвигателя на вал насоса. Устройство и принцип работы изложен в эксплуатационной документации на муфту.

1.5.5 В непосредственной близости от насоса (агрегата), включенного в автоматические процессы, должна быть смонтирована кнопка аварийной остановки насоса (агрегата), обеспечивающая его безопасное ручное отключение, при нарушении установленных режимов его работы, предусмотренных в настоящем руководстве по эксплуатации, если это не скажется отрицательно на безопасности системы в целом. Кнопка аварийной остановки должна быть оборудована механизмом блокировки повторного запуска. Новая команда запуска может выполняться только после специального сброса блокировки.

- 1.5.6 Материалы, примененные в насосе, при условиях нормальной эксплуатации, оговоренных в настоящем РЭ, не теряют своих характеристик и не снижают уровень взрывозащиты под влиянием окружающей среды и условий эксплуатации на протяжении всего срока службы.
- 1.5.7 В конструкции насоса применены материалы и конструктивные решения предотвращающие образование искр, а так же перегрев в результате трения или ударов, возникающие при вращении составных частей, при условиях нормальной эксплуатации, оговоренных в настоящем РЭ.

- 1.5.8 Насос допускает эксплуатацию в переменном режиме по всем параметрам в диапазонах, не превышающих номинальных значений соответствующих параметров. При этом изменение режима работы может осуществляться как в ручном, так и в автоматическом режиме в зависимости от технологии эксплуатационного процесса.
 - 1.6 Маркировка и пломбирование.
- 1.6.1 На насосе, на видном месте прикреплена табличка. Табличка насоса содержит следующие данные:
 - страна-изготовитель;
 - адрес предприятия-изготовителя;
 - товарный знак и наименование предприятия-изготовителя;
 - единый знак обращения на рынке (EAC);
 - обозначение насоса;
 - обозначение технических условий;
 - регистрационный номер органа по сертификации и его наименование;
 - номер сертификата;
 - знак маркировки взрывозащиты (Ex);
 - маркировка взрывозащиты оборудования;
 - диапазон температур окружающей среды;
- производительность насоса при перекачивании жидкости вязкостью 76·10⁻⁶ м²/с;
 - максимальное давление, создаваемое насосом;
 - мощность при перекачивании жидкости вязкостью 76·10⁻⁶ м²/с;
 - частота вращения;
 - масса насоса;
 - месяц и год изготовления;
 - порядковый номер насоса;
 - клеймо ОТК предприятия-изготовителя.

Пример оформления фирменной таблички приведен на рисунке 3.

- 1.6.2 На каждом агрегате, на видном месте прикреплена табличка. Табличка агрегата содержит следующие данные:
 - страна-изготовитель;
 - адрес предприятия-изготовителя;

- товарный знак и наименование предприятия-изготовителя;
- единый знак обращения на рынке (EAC);
- обозначение агрегата;
- обозначение технических условий;
- регистрационный номер органа по сертификации и его наименование (для агрегатов, изготавливаемых во взрывобезопасном исполнении);
- номер сертификата (для агрегатов, изготавливаемых во взрывобезопасном исполнении);
- знак маркировки взрывозащиты (Ex) (для агрегатов, изготавливаемых во взрывобезопасном исполнении);
- маркировка взрывозащиты оборудования (для агрегатов, изготавливаемых во взрывобезопасном исполнении);
- диапазон температур окружающей среды (для агрегатов, изготавливаемых во взрывобезопасном исполнении);
- производительность насоса при перекачивании жидкости вязкостью 76·10⁻⁶ м²/с;
 - максимальное давление, создаваемое насосом в агрегате;
 - мощность приводного электродвигателя;
 - частота вращения;
 - масса агрегата;
 - месяц и год изготовления;
 - порядковый номер агрегата;
 - клеймо ОТК предприятия-изготовителя.

Пример оформления фирменной таблички приведен на рисунке 3.

- 1.6.3 На подводящем патрубке прикреплена табличка "Всасывание", на нагнетательном "Нагнетание".
- 1.6.4 Маркировка деталей и сборочных единиц насоса для сборки производится согласно правилам, принятым на предприятии-изготовителе.
- 1.6.5 Запасные части маркируются обозначением чертежа детали. Детали, не допускающие маркировки, снабжаются бирками.
- 1.6.6 Покрытие насоса (агрегата) согласно требованиям чертежей и по технологии завода-изготовителя, разработанной в соответствии с ГОСТ 9.032-74.

Материал покрытия грунт-эмаль "Пентал-Амор" ТУ 2312-027-45822449-2000 RAL 5017 (синий), кожух и муфта окрашиваются эмалью желтой, стрелка, указывающая направление вращения ротора — эмалью красной. Класс покрытия не хуже VI.6 $_{100^{\circ}\text{C}}$ У1 ГОСТ 9.032-74. При поставке в страны с тропическим климатом класс покрытия VI.6 $_{100^{\circ}\text{C}}$ Т1 ГОСТ 9.032-74. Толщина покрытия должна составлять менее чем 0,2 мм.

По согласованию между потребителем и производителем требования к окраске могут быть изменены, при этом не должны быть нарушены требования по взрывозащите.

1.6.7 После изготовления насос (агрегат), запасные части и инструмент консервируют по ГОСТ 9.014-78. Группа изделия II – 2, вариант защиты ВЗ-2, группа хранения 2 (С) по ГОСТ 15150-69. Срок сохраняемости – 2 года.

Консервации подлежат все подвергающиеся коррозии в атмосферных условиях обработанные, но не окрашенные поверхности агрегата, запасные части и инструмент.

Детали из коррозионностойких материалов консервации не подлежат. Срок действия консервации насоса – 2 года, а его запасных частей и инструмента – 3 года.

- 1.6.8 Консервацию внутренних полостей насоса производить путем прокачки на специальном стенде смеси минерального масла с 5-10% присадкой АКОР-1 ГОСТ 15171-78 в течение не менее 10 мин.
- 1.6.9 Все наружные неокрашенные поверхности, крепеж и инструмент консервировать смазкой ПВК 3Т 5/5-5 ГОСТ 19537-83.
- 1.6.10 После консервации патрубки закрываются заглушками и пломбируются консервационными пломбами. Пломбы, выполненные по ГОСТ 18677-73 ставятся на проволоке, продетой крест-накрест через отверстия во фланце.

Консервационные пломбы свидетельствуют о том, что агрегат законсервирован на период гарантийного срока хранения. Места консервационного пломбирования указаны в приложении Б буквой «К».

1.6.11 Гарантийные пломбы ставятся на проволоке, продетой крестнакрест через отверстия в двух соседних шпильках в переднем и заднем корпусах подшипников. Места гарантийного пломбирования указаны в приложении Б буквой «Г».

- 1.7 Упаковка
- 1.7.1 Насосы (агрегаты) упаковываются в тару, выполненную по чертежам предприятия-изготовителя. Тара должна исключать возможность механических повреждений и воздействия атмосферных осадков на агрегаты при их транспортировании и хранении в условиях 2 (С) ГОСТ 15150-69.
- 1.7.2 Комплект запасных частей укладывается в ящик, выполненный согласно конструкторской документации предприятия-изготовителя.
- 1.7.3 Техническая и эксплуатационная документация, поставляемая комплектно с насосом (агрегатом), обернута в парафинированную бумагу ГОСТ 9569-2006 или во влагонепроницаемый пакет, упакована в ящик с запасными частями или надежно закреплена на насосе (агрегате).
- 1.7.4 Ремонтный комплект упакован в ящик, выполненный по чертежам предприятия-изготовителя.
- 1.7.5 При погрузке и выгрузке упакованный насос (агрегат) следует поднимать за места, указанные на упаковке, а распакованный за специальные строповые устройства.
 - 1.7.6 Маркировка тары в соответствии с ГОСТ 14192-96.

1.7.7 Если в процессе транспортировки, хранения и эксплуатации насос (агрегат) может подвергаться внешним воздействиям, не предусмотренным настоящим РЭ, необходимо предусмотреть дополнительные средства защиты позволяющие исключить не предусмотренные воздействия с целью сохранения взрывозащиты.

- 2 ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ
- 2.1 Меры безопасности при подготовке изделия к работе.

Требования безопасности при установке и эксплуатации насоса (агрегата) должны соответствовать ГОСТ 31839-2012, ГОСТ 31441.1-2011, ГОСТ 31610.0-2019.

- 2.1.1 Каждый насос (агрегат) при погрузке, разгрузке и транспортировании должен перемещаться согласно ГОСТ 12.3.020-80.
- 2.1.2 При подъеме и установке насоса (агрегата) строповку производить по схеме, приведенной в приложении Б.

Запрещается поднимать насос (агрегат) за места, не предусмотренные схемой строповки (за вал насоса, кожух электродвигателя и т.д.).

- 2.1.3 Место установки насоса (агрегата) должно удовлетворять следующим требованиям:
- обеспечивать свободный доступ к насосу (агрегату) при эксплуатации, а также возможность его сборки и разборки;
- масса фундамента должна не менее, чем в четыре раза превышать массу агрегата;
- при проектировании фундаментов, перекрытий и помещений для установки насосов (агрегатов) должны быть выбраны строительные решения, обеспечивающие гигиенические нормы вибрации и шума на рабочих местах по ГОСТ 12.1.012-2004 и требования раздела 6 ГОСТ 12.1.003-2014;

- при выборе электрических решений необходимо выполнять требования, приведенные на табличках и в эксплуатационной документации на комплектующее электрооборудование;
- силовой кабель приводного двигателя должен быть проложен таким образом, чтобы он не касался системы трубопроводов насоса;
- электродвигатель, входящий в комплект насоса должен быть заземлен, и отвечать требованиям ГОСТ 12.2.007.0-75. Для монтажа и эксплуатации насоса допускаются двигатели сопротивление изоляции которых, измеренное при 500 В постоянного тока между проводами силовой цепи и цепи защиты не меньше 1 МОм, если иное не оговорено в эксплуатационной документации на них.

- на силовой питающей линии должны быть установлены защитные выключатели электродвигателя подобранные (настроенные) в зависимости от номинального тока двигателя;
- 2.1.4 Установка электрооборудования должна соответствовать требованиям ПУЭ («Правил устройства электроустановок»), эксплуатация должна производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителем» и «Правилами техники безопасности при эксплуатации электроустановок потребителем».

2.1.5 При установке и работе насоса (агрегата) во взрывопожароопасных помещениях (производствах) насос (агрегат) должен быть укомплектован взрывозащищенными комплектующими при этом уровень взрывозащиты должен соответствовать классу взрывоопасности зоны установки. Требования безопасности при установке и эксплуатации насоса (агрегата) должны соответствовать п. 5.11 ГОСТ 31839-2012.

Средства и методы обеспечения пожаро-взрывобезопасности комплектующего оборудования должны быть приведены в документации на это оборудование.

При перекачивании, пожароопасной или вредной жидкости на местах эксплуатации слив жидкости и отвод утечек от насоса осуществляется безопасно через герметичные сливные линии, подсоединенные к отверстиям для слива перекачиваемого продукта (см приложение Б).

Возможные утечки перекачиваемой жидкости с торцового уплотнения собираются в корпусах подшипников (поддоне рамы) и отводятся в дренаж по герметичной линии подсоединенной к отверстию для слива (см приложение Б).

- 2.1.6 Материалы, примененные в конструкции насоса не способствуют образованию статического электричества, для снятия статического электричества образуемого при работе, насос и рама должны быть заземлены. Место заземления насоса (агрегата) приведено в приложении Б.
- 2.1.7 Насос должен комплектоваться электродвигателем с классом защиты от поражения электрическим током 1 по ГОСТ 12.2.007.0-75
- 2.1.8 Степень защиты насоса от механических факторов IP 23 по ГОСТ 14254-2015.

2.1.9 Степень защиты насоса (агрегата) от прикосновения к движущимся частям IP 44 по ГОСТ 14254-2015.

- 2.1.10 Насос (агрегат) в целом и его составные части при условиях нормальной эксплуатации (оговоренных в ТУ и РЭ) не могут быть источниками воспламенения. Если части насоса (агрегата) по технологическим причинам в процессе работы могут нагреваться выше температуры самовоспламенения окружающей взрывоопасной среды, потребитель должен принять дополнительные меры по изоляции насоса в целом или его составных частей. Требования пожарной безопасности электродвигателя, применяемого для комплектации насоса, по ГОСТ 12.1.004-91.
- 2.1.11 Насос (агрегат) в целом и его составные части в процессе транспортировки, хранения и эксплуатации не выделяют горючие газы и пыль, способные вызвать создание взрывоопасной среды.

ВНИМАНИЕ!

2.1.12 Комплекты и контрольно – измерительные приборы, подсоединенные к насосу (агрегату), должны быть рассчитаны на предельно допустимые параметры, возникающую при работе насоса (агрегата).

2.1.13 Перед запуском в работу насоса (агрегата) произвести его заземление. Все работы, производимые по устранению неисправностей, а так же регламентные работы, производить при отключенном от питающей сети приводе.

2.1.14 Для обеспечения требований по взрывозащите на месте эксплуатации на насосе (агрегате) должны быть установлены датчики контроля температуры подшипников.

2.2 Подготовка к монтажу

ВНИМАНИЕ!

- 2.2.1 Перед монтажом и подсоединением насоса (агрегата) к трубам систему труб и фитингов необходимо вычистить. это следует сделать, чтобы избежать повреждения и разрушения элементов насоса и фитингов твердыми частицами, остающимися после сварки, и другими посторонними предметами.
- 2.2.2 Монтаж и наладку насоса производить в соответствии с настоящим руководством по эксплуатации. Монтаж и наладку комплектующего оборудования производить в соответствии с технической документацией на это оборудование.
 - 2.2.3 После доставки насоса (агрегата) на место установки необходимо:
- освободить его от упаковки и убедиться в наличии заглушек на всасывающем и напорном патрубках, сохранности консервационных и гарантийных пломб, технической документации и запасных частей;
- демонтировать защитный кожух с насосного агрегата и провернуть ротор насоса вручную, убедиться в отсутствии заеданий.
- 2.2.4 Снять фиксатор вала электродвигателя (при наличии), для чего необходимо отвернуть две гайки крепления фиксатора к крышке электродвигателя и болт крепления фиксатора к полумуфте, поставить гайки на прежние места и убедиться в наличии вращения вала насоса.
- 2.2.5 Удалить консервацию со всех наружных обработанных поверхностей.
- 2.2.6 Расконсервация проточной части насоса не производится, если консервирующий состав не оказывает отрицательного влияния на перекачиваемый продукт. При необходимости расконсервации, промывку насоса произвести продуктом нейтральным по отношению к перекачиваемой жидкости и не влияющим на материалы примененные в конструкции насоса.
 - 2.3 Монтаж системы трубопроводов

ВНИМАНИЕ!

2.3.1 Подводящая и нагнетательная линии должны быть собраны таким образом, чтобы во время бездействия насос не осушался, т. е. винты насоса должны быть полностью погружены в перекачиваемую жидкость.

2.3.2 Номинальный диаметр трубопровода подводящей линии при условии самовсасывания должен быть выбран таким образом, чтобы скорость потока не превышала 1 м/с.

Номинальный диаметр трубопровода подводящей (при условии наличия избыточного давления) и нагнетательной линии должен быть выбран в соответствии с расчетом сопротивления трубопровода (рекомендуемая скорость потока в трубопроводе не более 3 м/с).

- 2.3.3 Подводящий и нагнетательный трубопроводы должны иметь задвижки, обратные клапаны и приборы контроля давления. Приборы должны быть расположены в местах, удобных для обозрения, защиты от повреждений и загрязнений.
- 2.3.4 В линии нагнетания должен быть установлен предохранительный клапан, защищающий насос и систему трубопроводов от чрезмерных давлений, которые могут возникнуть при аварийном перекрытии напорного трубопровода во время работы насоса. Давление полного перепуска не должно превышать давление на выходе из насоса более, чем на 0,1-0,2 МПа (1-2 кгс/см²)2.3.5 На подводящей линии для защиты насоса от посторонних частиц, содержащихся в перекачиваемой среде, необходимо установить фильтр с размером ячейки от 0,6 до 4 мм из стали 12X18Н9Т ГОСТ 5632-2014. Размер ячейки выбирается таким образом, чтобы суммарное сопротивление всасывающей магистрали, при эксплуатации насоса в условиях самовсасывания, не превышало 0,05 МПа.

Живое сечение фильтра должно быть не менее чем в 3...4 раза больше сечения подводящего трубопровода.

Наличие фильтра не снимает с эксплуатирующей организации ответственности за повреждение насоса в результате попадания в него инородных тел и механических примесей.

Конструкция фильтра не должна затруднять его осмотр и чистку. Перед насосом должен стоять мановакуумметр или другой прибор, позволяющий

оценить сопротивление всасывающей магистрали. Если сопротивление всасывающей магистрали более 0,05 МПа (0,5 кгс/см²), фильтр следует прочистить.

ВНИМАНИЕ!

- 2.3.6 На корпусе насоса, а при невозможности, в подводящем трубопроводе должно быть установлено устройство (датчик "сухого хода") не допускающее работу насоса на сухую (незаполненного перекачиваемой жидкостью).
- 2.3.7 Трубопроводы должны поддерживаться на подпорках или стойках, и иметь температурные компенсаторы. Передача нагрузок от трубопроводов на фланцы насосов НЕ ДО-ПУСКАЕТСЯ. Для исключения нагрузок на корпус насоса, возникающих из-за несоосности, непараллельности и неплоскостности фланцев патрубков насоса и фланцев трубопроводов подводящей и нагнетательной линии, рекомендуется применять сильфонные компенсаторы.
- 2.4 Монтаж изделия

ВНИМАНИЕ!

- 2.4.1 Проверить опорные поверхности фундамента и при необходимости выровнять их в одной плоскости.
- 2.4.2 Установить насос на фундамент и надежно закрепить. Насос должен быть надежно заземлен.
- 2.4.3 Подсоединить подводящий и нагнетательный трубопроводы, предварительно сняв заглушки с патрубков насоса, установить контрольно-измерительные приборы (манометры, датчики давления, датчики температуры и т.д.).

ВНИМАНИЕ!

Соединение труб к насосу должно быть без внутренних напряжений и с надежными уплотнениями.

2.4.4 Во время опрессовки трубопроводов насос и патрубки не должны подвергаться пробному давлению.

ВНИМАНИЕ!

2.4.5 Необходимо сразу после монтажа проверить соосность валов насоса и привода. Значения смещения и перекоса должны соответствовать указанным в п.1.5.3

Для регулировки смещения валов насоса и электродвигателя необходимо ослабить крепежные болты, крепящие насос и двигатель к раме.

Для регулировки смещения по горизонтали в конструкции рамы предусмотрены специальные регулировочные болты. Вкручивая (выкручивая) их произвести регулировку в горизонтальной плоскости.

Для регулировки по вертикали необходимо применять регулировочные прокладки под лапы насоса и (или) двигателя.

Допускается применение других приспособлений (устройств), позволяющих обеспечить требуемый уровень центровки и жесткости системы "насосрама-двигатель".

- 2.5 Подготовка к пуску.
- 2.5.1 Убедиться в соблюдении правил техники безопасности в зоне работ.
- 2.5.2 Проверить уровень масла в редукторе по отметке на маслоуказателе, в случае необходимости добавить масло.
- 2.5.3 Заполнить насос A1 2BB и подводящий трубопровод перекачиваемой жидкостью. Стравить газ, имеющийся в системе трубопроводов.

ВНИМАНИЕ!

Запрещается запускать насос без предварительного заполнения перекачиваемой жидкостью.

2.5.4 Полностью открыть задвижки на подводящем и нагнетательном трубопроводах. Убедиться в исправности трубопроводов и задвижек, герметичности соединений.

ВНИМАНИЕ!

Запрещается запускать насос на закрытую задвижку.

- 2.5.5 Проверить направление вращения привода насоса в следующей последовательности:
 - снять защитный кожух муфты;
 - разобрать муфту (см. эксплуатационную документацию на муфту);
- подсоединить двигатель в электрическую сеть и сделать пробный пуск двигателя, вращение вала насоса левое (против хода часовой стрелки), если смотреть со стороны привода;
 - убедившись в правильности вращения, собрать муфту;
 - установить защитный кожух.

Запрещается эксплуатация насоса без установленного ограждения соединительной муфты.

2.5.6 Если нагретые или холодные части оборудования могут вызвать травму, то эти части должны быть изолированы от контакта с ними.

- 2.5.7 Кроме выполнения данных пунктов необходимо выполнять мероприятия, приведенные в соответствующих разделах эксплуатационной документации на комплектующее оборудование.
 - 2.6 Пуск (опробование), подготовка к работе.
- 2.6.1 Пустить в работу насос (агрегат) нажатием кнопки «Пуск» или подачей управляющего сигнала от системы управления.
- 2.6.2 Во время работы периодически следить за показаниями приборов и герметичностью торцовых уплотнений.
- 2.6.3 В случае ненормальной работы насоса (агрегата) остановку осуществить нажатием кнопки "Аварийный стоп", исключающей самопроизвольный повторный запуск, после чего закрыть задвижки на подводящей и нагнетательной линии.
 - 2.6.4 Стравить давление в насосе.

3 ИСПОЛЬЗОВАНИЕ

3.1 Пуск

Пуск насоса (агрегата) в работу производить в следующей последовательности:

- внимательно осмотреть насос и двигатель, убедиться в наличии вращения ротора насоса;
- проверить наличие масла в редукторе, при необходимости долить масло до нужного уровня.
 - открыть задвижку на подводящем и нагнетательном трубопроводах;
 - заполнить насос жидкостью, стравить газ из насоса;
- пустить насос (агрегат) в работу нажатием кнопки «Пуск» или подачей управляющего сигнала от системы управления.
 - 3.2 Порядок контроля работоспособности

Периодически (не менее одного раза в сутки) следить за:

- показаниями приборов;
- герметичностью соединений.

Резкие колебания стрелок приборов, а также повышенный шум и вибрация характеризуют ненормальную работу насоса. В этом случае необходимо остановить насос и устранить неисправности в соответствии с указаниями в таблице 5.

Контролируемые параметры работы насоса и комплектующих, а также наработка агрегата в часах должны заноситься в специальный журнал или фиксироваться любым другим способом.

- 3.3 Меры безопасности при работе изделия
- 3.3.1 Обслуживание агрегатов периодическое, не требует постоянного присутствия обслуживающего персонала.

На месте эксплуатации насоса (агрегата) должны быть выполнены меры по защите работников от воздействия шума согласно раздела 6 ГОСТ 12.1.003-2014 и от воздействия вибрации согласно ГОСТ 12.1.012-2004.

При необходимости присутствия обслуживающего персонала возле насоса (агрегата) длительное время, предприятие-изготовитель насоса (агрегата) рекомендует применять индивидуальные средства защиты органов слуха.

3.3.2 При работающем агрегате запрещается:

- производить ремонт;
- подтягивать болты, гайки.

ВНИМАНИЕ!

Работа насоса при закрытых задвижках, установленных на подводящем и нагнетательном трубопроводах, не допускается.

ВНИМАНИЕ!

При параллельной работе двух и более насосов в одной системе частота вращения ведущего ротора каждого насоса не должна отличаться более чем на 20%. В противном случае, насос с большей частотой вращения будет передавливать насос с меньшей частотой вращения, что приведет к нестабильной работе системы и снижению ресурса оборудования.

- 3.3.3 При перекачивании жидкостей с температурой более 70°С (343 К) необходимо принять меры для защиты персонала от ожога (изоляция, экран, ограждение или др.).
- 3.3.4 Насос (агрегат) не представляет опасности для окружающей среды. Он не имеет в своем составе каких-либо химических, биологических или радиоактивных элементов, которые могли бы принести ущерб здоровью людей.
- 3.3.5 Остальные требования безопасности, не оговоренные в настоящем руководстве по эксплуатации, должны соответствовать ГОСТ 31839-2012.

3.4 Остановка

Остановка агрегата может быть произведена оператором или системой контроля и управления:

- отключить электродвигатель;
- закрыть задвижки на подводящей и нагнетательной линии;
- стравить давление в насосе;
- при длительной остановке насос должен быть законсервирован согласно п.п. 1.6.7-1.6.9.

- 3.5 Особые условия эксплуатации
- 3.5.1 При установке и работе насоса (агрегата) во взрыво-пожароопасных помещениях (производствах) насос (агрегат) должен быть укомплектован взрыво-защищенными комплектующими. При выборе взрывозащищенных комплектующих, уровень взрывозащиты комплектующих должен соответствовать классу зоны установки, группе, подгруппе, температурному классу и максимальной температуре поверхности, а также иметь сертификат, подтверждающие соответствие оборудования требованиям ТР ТС 012/2011.
- 3.5.2 Не допускается запуск и работа насосов, не заполненных перекачиваемой жидкостью.
- 3.5.3 При эксплуатации должен осуществляться контроль параметров оборудования, указанных в эксплуатационной документации.
- 3.5.4 При эксплуатации оборудования, при перекачивании нагретых жидкостей или применении теплоносителя в рубашке обогрева насоса, потребитель обязан предусмотреть меры, исключающие возможность превышения температуры поверхностей оборудования свыше температуры, соответствующей температурному классу или максимальной температуре поверхности оборудования, указанных в маркировке взрывозащиты на табличке оборудования
- 3.5.5 Эксплуатация насосов и агрегатов не допускается без установки следующих приборов:
- контроля давления перекачиваемой жидкости на входе и выходе насоса;
- контроля температуры подшипников насоса и перекачиваемой жидкости;
- контроля заполнения насоса перекачиваемой жидкостью (датчик "сухого хода");
- указанных в эксплуатационной документации на комплектующее оборудование.

Приборы контроля приобретает потребитель самостоятельно. По требованию потребителя приборы контроля могут быть поставлены в комплекте с насосом, что оговаривается в договоре на поставку.

Ответственность за наличие приборов контроля на месте эксплуатации, оговоренных в настоящем РЭ, независимо от объема поставки несет потребитель.

При монтаже и эксплуатации потребителем должна быть обеспечена защита оборудования от внешних воздействий, не предусмотренных эксплуатационной документацией, с целью сохранения взрывозащиты.

- 3.5.6 При проведении ремонта лакокрасочного покрытия, полученное покрытие должно иметь следующие характеристики:
 - 1) толщина слоя лакокрасочного покрытия не более 0,2 мм;
- 2) поверхностное сопротивление лакокрасочного покрытия не более 1 ГОм при относительной влажности (50±5)%;
- 3) электрический пробой лакокрасочного покрытия при постоянном токе напряжением не более 4 кВ.

Контроль характеристик осуществлять по ГОСТ 31441.1-2011.

- 3.5.7 Ударостойкость смотрового окна указателя уровня масла в картере синхронизирующих шестерён обеспечивается при низкой опасности механических разрушений.
- 3.5.8 Запрещается эксплуатация оборудования, не подключенного к заземлению.
- 3.5.9 Потребитель должен соблюдать назначенный срок службы самого оборудования и его Ех-комплектующих, в течение которого гарантируется сохранность параметров взрывозащиты, установленных изготовителем.

- 4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
- 4.1 Обслуживание изделия
- 4.1.1 Во время работы насоса (агрегата) ежедневное обслуживание его сводится к наблюдению за показаниями контрольно-измерительных приборов: манометра, мановакуумметра, электроизмерительных приборов и за работой уплотнений.

Все работы по обслуживанию и ремонту насоса (агрегата), проводимые в процессе эксплуатации необходимо заносить в таблицу Д.1 (см. приложение Д) или журнал по форме данной таблицы.

- 4.1.2 Каждые 2000 ч наработки:
- производить внешний осмотр агрегата и чистку при необходимости;
- проверять затяжку резьбовых соединений.

Очистку насоса (агрегата) осуществлять только влажной ветошью.

Период длительной остановки следует использовать для проведения предупредительного ремонта, а также для устранения неисправностей, отмеченных во время работы насоса.

Каждую неделю проворачивать валы неработающих насосов минимум на 1,25 оборота.

- 4.1.3 Обслуживание комплектующего оборудования производится в соответствии с эксплуатационной документацией на это оборудование.
- 4.1.4 Уход за подшипниками двигателя в соответствии с эксплуатационной документацией на привод.
 - 4.1.5 Схема мест смазки агрегата приведена на рисунке 2.
- 4.1.6 Марки смазок подшипников и синхронизирующих шестерен насоса, количество и периодичность замены указаны в таблице 5.

Таблица 5 Марки смазок, применяемых в насосе

Место смазки	Кол-во	Марка смазки	Периодичность замены
Подшипники и синхронизирующие шестерни в крышке редуктора	15 л	ТУ0253-053-	Первая замена через 500 ч наработки, последующие через каждые 2000 ч
Подшипники крышки передней	4,5 л		или 6 месяцев.

Примечание – Допускается применять смазки других марок по свойствам и характеристикам не хуже приведенных.

- 4.1.7 Контроль состояния масла в крышке редуктора ежедневный. При уменьшении уровня долить масло до отметки на маслоуказателе. При загрязнении масло заменить.
- 4.1.8 Температура в подшипниковых узлах не должна превышать плюс 90°С. При превышении температуры сверх указанного значения вследствие выхода из строя подшипника, вышедший из строя подшипник следует заменить.
- 4.1.9 Чрезмерный нагрев подшипников, повышенный или неравномерный их шум вызывается неправильной сборкой. В этом случае необходимо остановить насос и устранить причину ненормальной работы подшипников.

4.2 Капитальный ремонт

Для проведения капитального ремонта насоса необходимо произвести его разборку согласно п. 4.3.7 и заменить изношенные детали. Перечень деталей, входящих в ремонтный комплект, приведен в приложении Г. Ремонтный комплект поставляется в сборе по отдельному договору. На предприятии-изготовителе производится его сборка, регулировка и испытания.

4.3 Разборка – сборка

Перед разборкой необходимо:

- отключить питание двигателя;
- закрыть задвижки на подводящем и нагнетательном трубо-проводах;
- слить перекачиваемую жидкость из корпуса насоса в дренажную емкость.

Работы по разборке-сборке проводить с помощником с применением грузоподъемных механизмов.

- 4.3.1 Разборку агрегата производить в следующей последовательности:
- отсоединить от насоса трубопроводы и контрольно-измерительные приборы;
 - снять защитный кожух, установленный над муфтой;
 - разобрать муфту (см. эксплуатационную документацию на муфту);
 - снять полумуфту с вала насоса;
 - снять насос с рамы, предварительно выкрутив крепежные винты.

При подъеме и установке насоса строповку производить по схеме, приведенной в приложении Б.

- 4.3.2 Сборку агрегата производить в следующей последовательности:
- установить насос на раму;
- установить полумуфту на вал насоса;
- произвести центровку валов насоса и двигателя;
- собрать муфту;

При сборке муфты все сбалансированные детали должны быть установлены согласно балансировочным меткам.

- установить защитный кожух над муфтой;
- подсоединить к насосу трубопроводы и контрольно-измерительные приборы.
- 4.3.3 Агрегаты комплектуются муфтой с втулкой промежуточной. Разборка насоса возможна без его демонтажа с рамы.

ВНИМАНИЕ!

Во избежание недоразумений при сборке все демонтируемые детали, такие как: шестерни, промежуточные втулки, радиально-упорные подшипники, крышки подшипников и торцовые уплотнения должны быть помечены.

Необходимо пометить взаимное расположение шестерен и винтовой нарезки роторов.

Перед сборкой насоса все извлеченные детали должны быть тщательно вычищены и проверены на возможность дальнейшего применения, уплотняющие поверхности деталей необходимо аккуратно протереть, проверить и слегка смазать.

В целях безопасности работы и экономической эффективности следующие детали не рекомендуется использовать повторно:

- плоские паронитовые прокладки;
- резиновые кольца уплотнений.
- 4.3.4 Разборку насоса с приводной стороны производить в следующей последовательности (рисунок 1):
 - слить в отдельную емкость масло из крышки 2 через пробку 1;
 - вынуть шпонку 6;
- отвернуть винты 13 с шайбами 14, вынуть штифты 49, снять крышку 2 с манжетой 7 и с кольцом 50;

- отвернуть шлицевые гайки 8, снять усиковые шайбы;
- отвернуть винты 9 с шайбами 10, болт 3 с прокладкой 4 и снять крышки подшипников 11;

Необходимо пометить положение крышек 11 относительно роторов и не перепутать при сборке.

- отвернуть гайки 17 и снять вместе с шайбами 18 со шпилек 16 и при помощи отжимных болтов стянуть корпус подшипника 15 вместе с крышкой подшипника 51, подшипниками 5 и деталями торцового уплотнения 45;
 - извлечь кольцо 46 из корпуса насоса 19 (при необходимости).
- 4.3.5 Сборку насоса с приводной стороны производить в следующей последовательности:
 - установить кольцо 46 на корпус насоса 19;
- установить корпус подшипника 15 в сборе с крышками 51 и деталями торцового уплотнения 45 на корпус насоса 19;
 - надеть шайбы 18 на шпильки 16 и накрутить гайки 17 (не затягивать);
 - установить подшипники 5 на ротора 56, 60 до упора;
 - проверить вращение ведущего ротора 56 насоса;
 - затянуть гайки 17 на шпильках 16;
 - установить усиковую шайбу, закрутить гайку 8,
- зафиксировать гайку 8 от откручивания усиковой шайбой, отогнув усик шайбы;
 - установить крышки 11;
 - закрутить болты 3 с прокладками 4, винты 9 с шайбами 10;
 - установить шпонку 6 на ротор ведущий 56.
- 4.3.6 Разборку насоса с неприводной стороны производить в следующей последовательности:
 - открутить пробку 36 и слить масло из редуктора;

ВНИМАНИЕ!

При наличие в масле воды, загрязнений и механических примесей, его повторное применение недопустимо.

- отвернуть гайки 26, снять шайбы 27 со шпилек 25 и снять крышку редуктора 31 с резиновым кольцом 37;
 - отвернуть винты 54, снять шайбы 55, 53;
- снять с роторов 56 и 60 шестерню 52, зубчатый венец 63 в сборе со ступицей колеса 62 и вынуть шпонки 59;

- отвернуть винты 33 с прокладками 34 и снять крышки 28, втулки 30;
- отвернуть гайки 22, снять шайбы 23 со шпилек 21;
- при помощи съемника подшипника стянуть корпус подшипника задний 24 вместе с подшипниками 35, крышками 39 и деталями торцового уплотнения 42:
 - вынуть подшипники 35 из корпуса подшипника 24;
 - снять кольцо резиновое 41 с корпуса 19;
- 4.3.7 Сборку насоса с неприводной стороны производить в следующей последовательности:
 - установить кольцо 41 на корпус 19;
- установить корпус подшипника 24 в сборе с крышками 39 и деталями торцового уплотнения 42 на корпус 19;
 - надеть шайбы 23 на шпильки 21 и накрутить гайки 22 (не затягивать);
 - установить подшипники 35 на ротора 56, 60 до упора;
- установить втулки 30, крышки 28 и закрепить винтами 33 с прокладками 34;
 - затянуть гайки 22 на шпильках 21;
- установить на ротора 56, 60 шпонки 59, шестерню 52, зубчатый венец 63 в сборе со ступицей колеса 62;
 - установить шайбы 53, 55 и закрутить винты 54;
 - проверить вращение ведущего ротора 56 насоса;
 - установить кольцо 37 и крышку редуктора 31;
 - надеть шайбы 27 на шпильки 25 и закрутить гайки 26;
 - закрутить пробку 36 с прокладкой;
 - залить масло в редуктор до уровня, закрутить сапун 29.
- 4.3.8 Для установки ремонтного комплекта (см. приложение Г) необходимо выполнить следующее:
 - выполнить мероприятия приведенные в п.п. 4.3.4;
 - открутить пробку 36 и слить масло из редуктора;

При наличие в масле воды, загрязнений и механических примесей, его повторное применение недопустимо.

- отвернуть гайки 26, снять шайбы 27 со шпилек 25 и снять крышку редуктора 31 с кольцом 37;
 - отвернуть гайки 22, снять шайбы 23 со шпилек 21;

- при помощи отжимных винтов вынуть ремонтный комплект из насоса;
- вынуть обойму 20 с кольцами 43, 44 из корпуса 19 с неприводной стороны;
- вставить в корпус 19 новую обойму 20 с установленными кольцами 43, 44 с неприводной стороны;
 - установить кольцо 41 в корпус 19;
 - вставить ремонтный комплект в насос;
 - надеть шайбы 23 на шпильки 21 и закрутить гайки 22;
 - установить кольцо 37 и крышку редуктора 31;
 - надеть шайбы 27 на шпильки 25 и закрутить гайки 26;
 - закрутить пробку 36 с прокладкой;
 - залить масло в редуктор до уровня, закрутить сапун 29.
 - выполнить мероприятия приведенные в п.п. 4.3.5.
 - 4.4 Уплотнение торцовое
- 4.4.1 Разборку и сборку торцового уплотнения производить в соответствии с эксплуатационной документацией на торцовое уплотнение.

Указания по монтажу и эксплуатации уплотнения торцового изложены в эксплуатационной документации на него.

- 5 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ.
- 5.1 Ожидаемые (возможные) неисправности агрегата и способы их устранения приведены в таблице 6.
- 5.2 Ожидаемые (возможные) неисправности комплектующего оборудования и способы их устранения приведены в руководстве по эксплуатации на соответствующее оборудование.
- 5.3 Возможные ошибки персонала и способы их устранения приведены в таблице 7.
- 5.4 Любой отказ или совокупность отказов насоса и/или его частей не могут привести к возникновению критического отказа способного вызвать взрыв. Критические отказы комплектующего оборудования приведены в эксплуатационной документации на него.

Таблица 6 Ожидаемые (возможные) неисправности агрегата и способы их устранения

Отказы в работе			
Насос не обеспечивает номинальную производительность			
Заедание рабочих органов насоса (прихват)			
Нагрев подшипников			
Уменьшился уровень масла в крышке редуктора			
Утечка перекачиваемой жидкости через торцовые уплотнения сверх допу-			
стимых значений.			
Причины и их устранение			1
Износ деталей гидравлической части насоса (роторов и обоймы). Заме-			
нить изношенные детали.			
Износ шестерен. Заменить изношенные детали.			
Износ подшипников. Заменить изношенные детали.			
Износ уплотнений. Заменить изношенные детали.			
Износ пар трения уплотнения. Извлечь и проверить детали торцовых			
уплотнений, заменить при необходимости.			

Таблица 7 Возможные ошибки персонала и способы их устранения

Гаолица 7 возможные ошиоки персонала и спосооы их ус	· pc		11717	•		
Отказы в работе						
Насос не подает жидкость						
Повышенная вибрация						
Пульсирующая подача					,	
Насос не обеспечивает номинальную производительность				7		
Заедание рабочих органов (прихват)			_			
Утечка перекачиваемой жидкости через торцовые уплотнения сверх						
допустимых значений.		1				
Давление насоса выше допустимого						
Мощность выше нормы						
Причины и их устранение						
Неверное направление вращения ведущего ротора. Изменить направление вращения.						
Насос не заполнен перекачиваемой жидкостью. Заполнить насос и подводящий трубопровод жидкостью.						
Закрыта задвижка на входе в насос. Остановить насос, открыть задвижку на входе в насос, заполнить насос и подводящий трубопровод жидкостью.						
Нарушена центровка валов насоса и двигателя. Произвести центровку валов.						
Подводящая линия негерметична, воздух попадает во всасывающую полость насоса. Проверить герметичность подводящей линии, устранить дефекты.						
Слишком высокое разрежение на входе в насос вследствие перекачивания жидкости высокой вязкости. Уменьшить вязкость жидкости, подогрев ее.						
Слишком высокое разрежение на входе в насос вследствие засорения фильтра. Прочистить фильтр.						
Двигатель не развивает нужную частоту вращения. Проверить частоту вращения двигателя, довести до требуемой.						
Неверно отрегулирован предохранительный клапан. Проверить настройку клапана и отрегулировать.						
Попадание посторонних частиц в затвор клапана. Разобрать клапан, очистить и произвести регулировку.						
Попадание посторонних частиц в гидравлическую часть насоса. Извлечь посторонние частицы из роторов.						
Работа насоса на сухую (незаполненного перекачиваемой жидкостью). Дать насосу остыть, и перед повторным включением убедиться в наличии вращения. При необходимости, заменить изношенные детали.						
Износ пар трения, резиновых колец торцового уплотнения вследствие длительной работы насоса на сухую (незаполненного перекачиваемой жидкостью). Извлечь и проверить детали торцовых уплотнений, заменить при необходимости.						
Слишком высокая вязкость перекачиваемой жидкости. Уменьшить вязкость жидкости, подогрев ее.						

6 РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, ГАРАНТИИ

изготовителя

6.1 Ресурсы, сроки службы и хранения

Средний ресурс до капитального ремонта – 15000 часов;

Средний срок службы – 10 лет;

Назначенный срок службы – 25 лет;

Назначенный ресурс – 50 000 часов;

Назначенный срок хранения до списания – 50 лет

Срок сохраняемости, при хранении в условиях 2(С) ГОСТ 15150-69- 2 года;

Средняя наработка до отказа 6000 часов;

Среднее время до восстановления – 16 часов.

6.2 Гарантии изготовителя (поставщика).

Гарантийный срок эксплуатации насосов, с учетом использования запасных частей, 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев со дня отгрузки с предприятия-изготовителя. Гарантии на комплектующее оборудование согласно эксплуатационной документации на это оборудование.

Предприятие-изготовитель в течение гарантийного срока несет ответственность за качество поставляемых насосов, за обеспечение технических характеристик, работоспособность и ресурс при наличии исправных гарантийных пломб, надлежащего хранения, обслуживания и эксплуатации в соответствии с требованиями настоящего руководства по эксплуатации.

Если в течение указанного гарантийного срока насос окажется несоответствующим техническим условиям по вине предприятия-изготовителя, предприятие-изготовитель в кратчайший, технически возможный срок, безвозмездно устраняет обнаруженные дефекты. В этом случае срок гарантии продлеваются на срок, в течение которого агрегат не использовался вследствие обнаруженного дефекта.

Если вина предприятия-изготовителя не подтверждается, то ремонт производится за счет потребителя.

Замена деталей из ЗИП и устранение мелких недостатков производится без участия предприятия-изготовителя с его письменного разрешения.

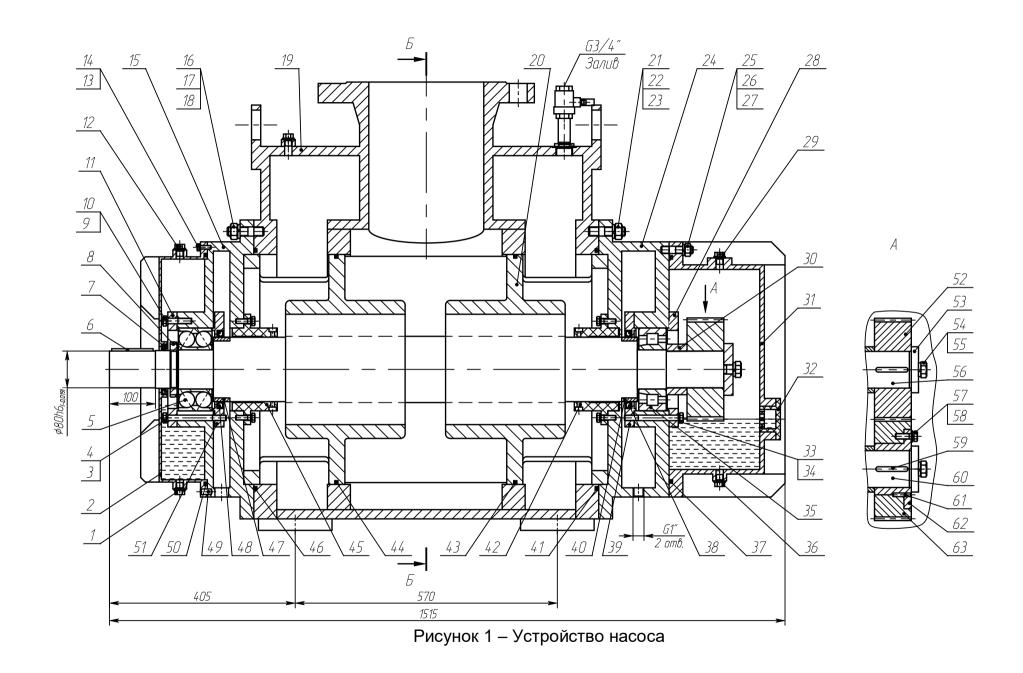
За пределами гарантийного срока, но в пределах установленного ресурса и срока службы, за предприятием-изготовителем сохраняется ответственность за качество поставленного насоса.

Если в течение гарантийного срока в насосе будут обнаружены дефекты по вине изготовителя, потребителю следует обратиться на предприятие-изготовитель по адресу:

303851, Россия, Орловская область, г. Ливны, ул. Мира, 231

Тел./факс: (48677) 7-81-26

- 10 ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ
- 10.1 Насос (агрегат) может транспортироваться любым видом транспорта при соблюдении правил перевозки для каждого вида транспорта.
- 10.2 Условия транспортирования и хранения в условиях 2 (С) ГОСТ 15150-69.
- 10.3 Транспортная маркировка груза производится в соответствии с ГОСТ 14192-96.
- 10.4 При погрузке и выгрузке упакованные насосы следует поднимать за места, указанные на упаковке, а распакованные за специальные строповые устройства по схеме, приведенной в приложении Б.
- 10.5 До пуска насосов в эксплуатацию, потребитель должен хранить их в упаковке. Группа хранения насосов 2 (С) ГОСТ 15150-69, срок хранения 2 года.


При хранении насосов свыше 2 лет (по истечению срока действия консервации) следует произвести анализ состояния консервации и при необходимости произвести переконсервацию в соответствии с ГОСТ 9.014-78.

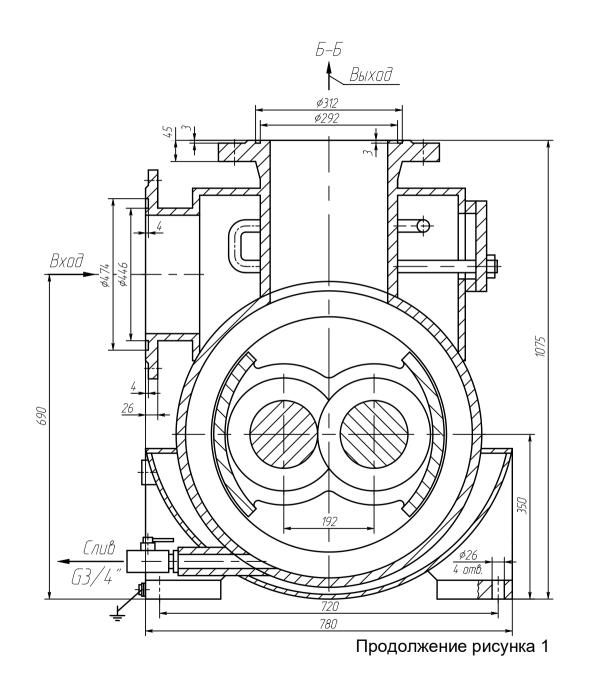

- 10.6 Насос (агрегат) не представляет опасности для жизни, здоровья людей и окружающей среды. Он не имеет в своей конструкции каких-либо химических, биологических или радиоактивных элементов, которые могли бы принести ущерб здоровью людей или окружающей среде.
- 10.7 Утилизацию насосов производить любым доступным методом с соблюдением установленных законом и иными нормативными правовыми актами требований.
- 10.8 Сведения о наличии драгоценных металлов и цветных сплавов в насосе приведены в таблице 8.

Таблица 8 Наличие драгоценных металлов и цветных сплавов в насосе

Наименование	№ рисунка, позиции	Масса, кг	Типоразмер насоса
Обойма Бр. ОЗЦ7С5Н1 ГОСТ 613-79	Рисунок 1, поз.20	365	A1 2BB 320/25 A1 2BB 400/20

10.9 Сведения по содержанию драгоценных металлов и цветных сплавов на комплектующее оборудование приведены в эксплуатационной документации на это оборудование.

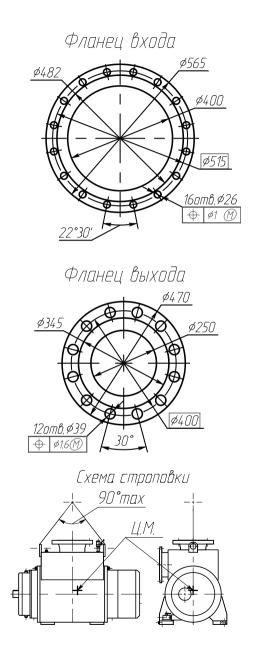


Таблица 9. Перечень деталей насоса к рисунку 1

Nº	Наименование детали	Кол.	Nº	Наименование детали	Кол.
ПОЗ.		шт.	ПО3.		ШТ.
1	Пробка	1	36	Пробка	1
2	Крышка	1	37	Кольцо 490-500-58-2-1314	1
3	Болт M16x125	8	38	Манжета "SKF"	
4	Прокладка	8		CR 135x170x12 HMS5 RG	2
5	Подшипник 3317А	2	39	Крышка подшипника 2	2
6	Шпонка 22х14х100	1	40	Втулка Speedi-Sleeve	
7	Манжета "SKF" CR 400804 VR1	1		CR 99533	2
8	Гайка М85х2-6Н.05	2	41	Кольцо 520-530-58-2-1314	1
9	Винт с шестигранной головкой		42	Уплотнение торцовое	2
	M16x40-5.6	4		A1 2BB 140	
10	Шайба 16.65Г	4	43	Кольцо 490-500-58-2-1314	1
11	Крышка подшипника 4	2	44	Кольцо 480-490-58-2-1314	1
12	Пробка	1	45	Уплотнение торцовое	2
13	Винт с шестигранной головкой			A1 2BB 140	
	M8x25-5.6	12	46	Кольцо 520-530-58-2-1314	1
14	Шайба 8.65Г.019	12	47	Втулка Speedi-Sleeve	
15	Корпус подшипника передний	1		CR 99533	2
16	Шпилька M20-6gx50.56	16	48	Манжета "SKF"	
17	Гайка М20-6Н.6	16		CR 135x170x12 HMS5 RG	2
18	Шайба 20.65Г	16	49	Штифт 10х40	4
19	Корпус насоса	1	50	Кольцо 500-510-58-2-1314	1
20	Обойма	1	51	Крышка подшипника 3	2
21	Шпилька M20-6gx50.56	16	52	Шестерня	1
22	Гайка М20-6Н.6	16	53	Шайба	2
23	Шайба 20.65Г	16	54	Винт с шестигранной голов-	
24	Корпус подшипника задний	1		кой M20x60-5.6	2
25	Шпилька M16-6gx50.56	16	55	Шайба 20.65Г	2
26	Гайка М16-6Н.6	16	56	Ротор ведущий	1
27	Шайба 16.65Г	16	57	Винт с шестигранной голов-	
28	Крышка подшипника 1	2		кой M10x25-5.6	2
29	Сапун	1	58	Шайба 10.65Г	2
30	Втулка	2	59	Шпонка 22x14x63	2
31	Крышка редуктора	1	60	Ротор ведомый	1
32	Маслоуказатель	2	61	Штифт 10x40	2
33	Винт с шестигранной головкой		62	Ступица	1
	M16x120-5.6	8	63	Венец колеса	1
34	Прокладка	8			
35	Подшипник NJ2317ECJ	2			

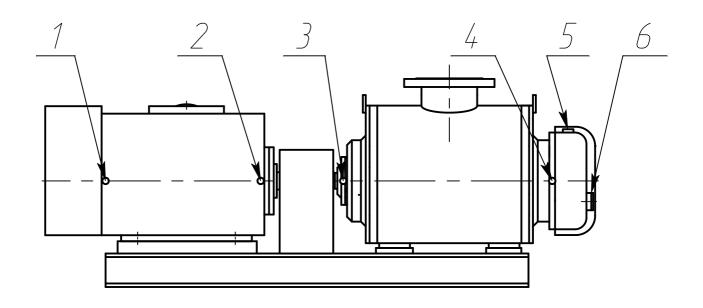
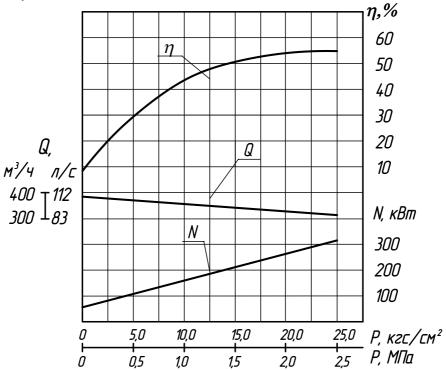
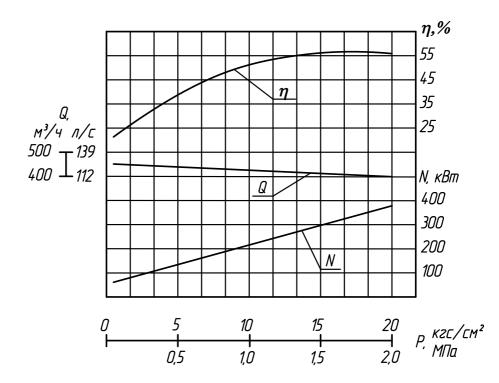


Рисунок 2 – Схема мест смазки

1 и 2 – смазка подшипников двигателя через пресс-маслёнку; 3 и 4 - смазка подшипников насоса через пресс-маслёнку; 5 – смазка редуктора насоса через пробку; 6 – контроль уровня смазки в редукторе.

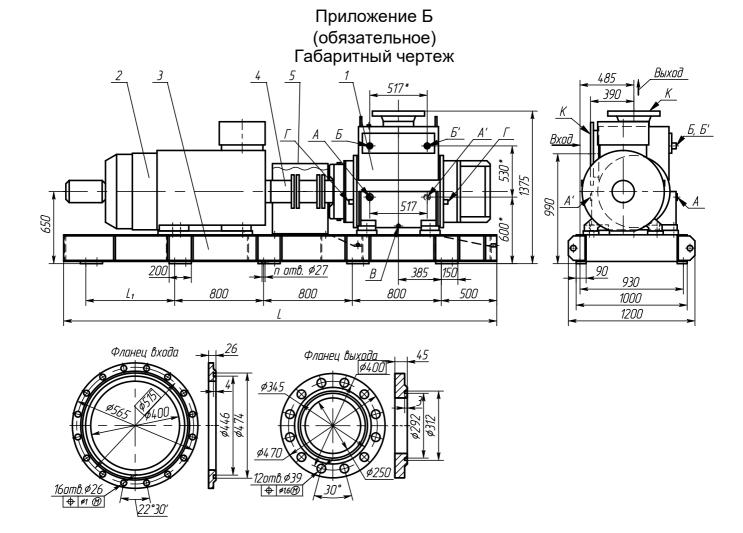



Рисунок 3 – Фирменная табличка (пример оформления)

Приложение А (обязательное) Характеристики насоса

Характеристика насоса A1 2BB 320/25 Жидкость — минеральное масло, вязкость — $76 \cdot 10^{-6}$ м²/с (10° ВУ). Частота вращения — 1450 об/мин.

Характеристика насоса А1 2BB 400/20 Жидкость – минеральное масло, вязкость – 76⋅10⁻⁶ м²/с (10°ВУ). Частота вращения – 1450 об/мин.



Продолжение приложения А

Таблица А.1 Виброшумовые характеристики

Обозначение типоразмера	Уровень звука, не более, дБА	Среднее квадратическое значение виброскорости, мм/с в октавных полосах частот в диапазоне от 8 до 1000 Гц в местах крепления агрегата к фундаменту, не более
A1 2BB 320/25 A1 2BB 400/20	99	2,0

Среднеквадратические значения виброскорости, замеренные на корпусах подшипников электронасосных агрегатов в диапазоне от 10 до 1000 Гц в трех взаимно перпендикулярных плоскостях на номинальном режиме работы не более 4,5 мм/с.

^{*}Для насосов в обогревном исполнении.

Отверстия "А" и "Б" допускается соединить перемычкой в этом случае: отверстие "А' " - подвод теплоносителя, отверстие "Б' " - отвод теплоносителя.

Типоразмер	Тип электродвигателя	L, MM	L ₁ ,	n	Мас- са, кг		
A1 2BB 320/25-250/20	BAO2 315L4 У2,5	3250	-	8	4650		
A1 2BB 400/20-400/20	ABB M3KP355MLA4B3	3900	800	10	5500		
Габаритные размеры агрегата при поставке с нештатным электродвигателем							
A1 2BB							

Рисунок Б1 - Габаритный чертеж агрегатов электронасосных на базе насосов типа A1 2BB320/25, A1 2BB 400/20

[&]quot;A", "Б" (G 3/4') - подвод теплоносителя (пара) в рубашку обогрева.

[&]quot;A' ", "Б' " (G 3/4') - отвод отработавшего теплоносителя (пара) от рубашки обогрева.

[&]quot;В" - отверстие для слива конденсата из рубашки обогрева.

Приложение В (обязательное)

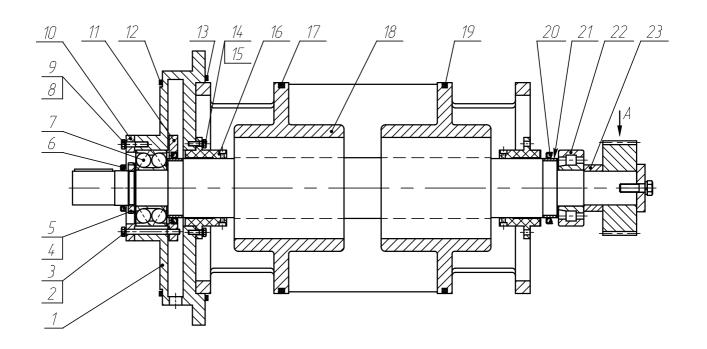

Перечень запасных частей и инструмента, комплектно поставляемых с насосом

Таблица В1 Перечень запасных частей и инструмента, комплектно поставляемых с насосами типа А1 2BB 320/25, A1 2BB 400/20

	Кол.,	Macca,	Нормативно - тех-	Примечание
Наименование	ШТ	ΚГ,	ническая докумен-	
Паименование		(1 шт)	тация или обозна-	
			чение чертежа	
ЗИП к уплотнению торцо-				
вому	8	4,0000		
Прокладка	16	0,0030	H41.706.00.019	
1				
Кольца:			ГОСТ 9833-73/	
480-490-58-2-1314	1	0,0390	ТУ 38.105.628-88	
490-500-58-2-1314	2	0,0400		
500-510-58-2-1314	1	0,0410		
520-530-58-2-1314	2	0,0430		
Прокладки,			ГОСТ 481-80	
Паронит ПМБ 1,0			1001 401 00	
Ø25xØ16	4	0,0010		
Ø55xØ42	1	0,0015		
Ø90xØ56	2	0,0020		
Манжеты:			Каталог "SKF"	
CR 400804 VR1	1	0,0500		
CR 135x170x12 HMS5 RG	4	0,0800		
Prvnya Spandi Slagva			Каталог "SKF"	
Втулка Speedi-Sleeve CR 99533	4	0,0500	Katajioi SKF	
OK 99000	4	0,0300		
Съемник подшипника	2	15,0000	H41.1054.00.050	
,,		-,,,,,,,		
Подшипники:			Каталог "SKF"	
NJ2317ECP	4	7,0000		
3317A	4	8,3000		

Приложение Г (справочное)

Перечень деталей ремонтного комплекта

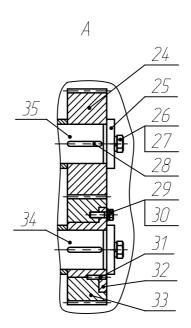


Рисунок Г.1 - Ремонтный комплект для насосов типа А1 2ВВ

Продолжение приложения Г

Таблица Г1 Перечень деталей ремонтного комплекта для насосов типа A1 2BB 320/25, A1 2BB 400/20

	BB 320/25, A1 2BB 400/20	Обозначение			
Nº	Наименование	конструкторской	Кол.,	Масса, кг	Примечание
ПОЗ.	Паименование	документации	ШТ.	(1 шт.)	Примечание
1	Корпус подшипника передний	Н41.1131.01.010	1	133,0	
2	Болт М16х125	H41.1131.01.014	8	0,280	
3	Прокладка	H41.706.00.019	8	0,003	
4	Гайка M85×2-6H.05	H41.835.01.031	2	0,522	
5	Шайба 85.01.08кп.05	H41.851.01.028	2	0,043	
6	Манжета "SKF" CR 400804 VR1	Каталог «SKF»	1	0,530	
7	Подшипник 3317А	Каталог «SKF»	2	8,300	
	Винт с шестигранной голов-	ГОСТ Р ИСО 4017-		•	
8	кой M16×40-5.6	2013	4	0,073	
9	Шайба 16.65Г	ΓΟCT 6402-70	4	0,006	
10	Крышка подшипника 4	H41.1131.01.005	2	4,000	
11	Крышка подшипника 3	H41.1131.01.004	2	4,300	
12	Кольцо 500-510-58-2-1314	ΓΟCT 9833-73/	1	0,041	
12		ТУ 38.105.628-88	I	0,041	
13	Кольцо 520-530-58-2-1314	ГОСТ 9833-73/ ТУ 38.105.628-88	2	0,043	
14	Винт с шестигранной голов-	ГОСТ Р ИСО 4017-	8	0,028	
	кой M10×25-5.6	2013			
15	Шайба 10.65Г	ΓΟCT 6402-70	8	0,002	
16	Уплотнение торцовое A1 2BB 140	A1 2BB 140	4	7,500	
17	Кольцо 480-490-58-2-1314	ГОСТ 9833-73/ ТУ 38.105.628-88	1	0,039	
18	Обойма	H41.1131.01.001	1	311,0	
19	Кольцо 490-500-58-2-1314	ΓΟCT 9833-73	2	0,040	
20	Манжета "SKF" CR 135x170x12 HMS5 RG	Каталог «SKF»	4	0,080	
21	Втулка Speedi-Sleeve CR 99533	Каталог «SKF»	4	0,050	
22	Подшипник NJ2317ECJ	Каталог «SKF»	2	7,000	
23	Втулка	H41.1131.01.007	2	1,500	
24	Шестерня	H41.1054.01.005	1	16,00	
25	Шайба	H41.1054.01.016	2	0,150	
26	Винт с шестигранной голов- кой M20×60-5.6	ГОСТ Р ИСО 4017- 2013	2	0,130	
27	Шайба 20.65Г	ΓΟCT 6402-70	2	0,075	
28	Шпонка 22×14×63	H41.1042.01.035-04	2	0,200	
29	Винт с шестигранной голов- кой M10×25-5.6	ГОСТ Р ИСО 4017- 2013	2	0,025	
30	Шайба 10.65Г	ΓΟCT 6402-70	2	0,002	
31	Штифт 10x40	0684.409.711.011-03	2	0,023	
32	Ступица	H41.1054.01.006	1	3,500	
33	Венец колеса	H41.1054.01.007	1	10,00	
34	Ротор ведомый	H41.1131.01.601-02 -03	1	184,0	A1 2BB 320/25 A1 2BB 400/20
35	Ротор ведущий	H41.1131.01.301-02	1	194,0	A1 2BB 320/25 A1 2BB 400/20